您好,欢迎来到仪器设备网! [登录] [免费注册]
仪器设备网
位置:首页 > 产品库 > Tertiapin-Q
立即咨询
咨询类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
请详细说明您的需求。
*验证码:
 
Tertiapin-Q
本产品不向个人销售,仅用作科学研究,不用于任何人体实验及非科研性质的动物实验。
Tertiapin-Q图片
CAS NO:252198-49-5
包装:1mg
规格:98%
市场价:3481元
分子量:2295.82

产品介绍
high affinity blocker for inward-rectifier K+ channels
CAS:252198-49-5
分子式:C100H163N31O23S4
分子量:2295.82
纯度:98%
存储:Store at -20°C

Background:

Tertiapin-Q is a highly selective blocker of GIRK1/4 heterodimer and ROMK1 (Kir1.1).


Tertiapin-Q is a highly selective blocker of G protein-coupled inwardly rectifying potassium (GIRK1/4) heterodimer and renal outer medullary potassium channel (ROMK1, Kir1.1)[1]. Tertiapin-Q is a potent and selective blocker for Kir1.1 renal outer medullary potassium, Kir3.1-Kir3.4 channels and calcium activated large conductance potassium channels (big potassium channels). The somatostatin (SS-14)-activated current is almost completely blocked (93.2±2.9%, n=5; P<0.01) by preincubation with the G protein-coupled inwardly rectifying potassium (GIRK) channel blocker Tertiapin-Q (TPN-Q)[2].


Tertiapin-Q is a muscarinic acetylcholine receptor-operated K+ current (IK,Ach) blocker. After the cessation of rapid atrial pacing, the atrial effective refractory period (AERP) is unchanged during the experimental period in the rapid atrial pacing (RAP) rabbits (n=6). Bepridil (1 mg/kg, n=5 for each group), Amiodarone (10 mg/kg, n=5 for each group), Vernakalant (3 mg/kg, n=5 for each group), Ranolazine (10 mg/kg, n=6 for each group) or Tertiapin-Q (0.03 mg/kg, n=5 for each group) on the AERP in the control and RAP rabbits. Tertiapin-Q significantly prolongs the AERP at each pacing cycle length both in the control and RAP rabbits. The extents of prolonging effect of Tertiapin-Q on the AERP in the RAP rabbits are greater than those in the control animals[3].


参考文献:
[1]. Picton LD, et al. Mechanisms underlying the endogenous dopaminergic inhibition of spinal locomotor circuit function in Xenopus tadpoles. Sci Rep. 2016 Oct 20;6:35749.
[2]. Günther T, et al. Research Resource: Real-Time Analysis of Somatostatin and Dopamine Receptor Signaling in Pituitary Cells Using a Fluorescence-Based Membrane Potential Assay. Mol Endocrinol. 2016 Apr;30(4):479-90.
[3]. Chiba T, et al. Influences of rapid pacing-induced electrical remodeling on pharmacological manipulation of the atrial refractoriness in rabbits. J Pharmacol Sci. 2016 Mar;130(3):170-6.